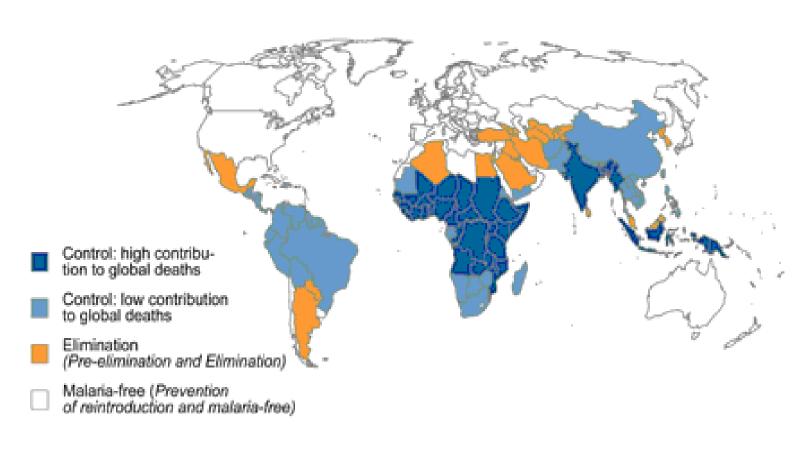
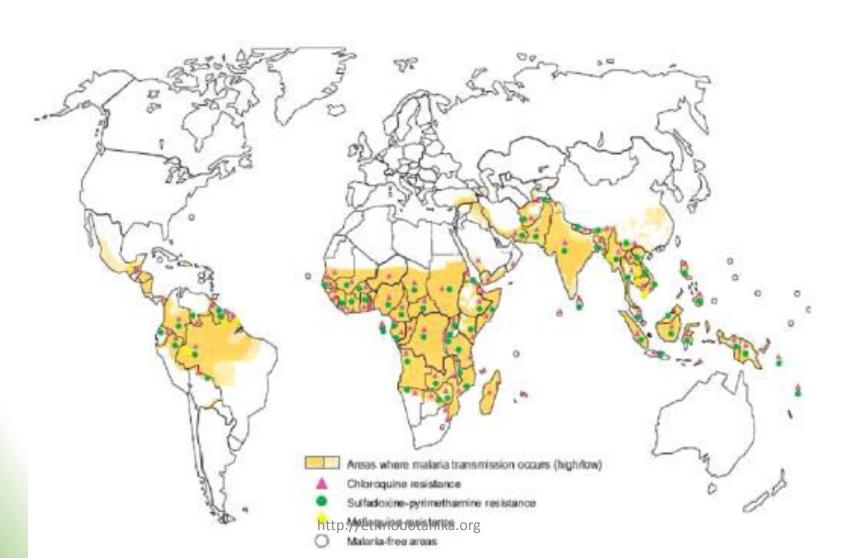


Recherche et valorisation des plantes antipaludéennes Université de Murcie Espagne - 2012

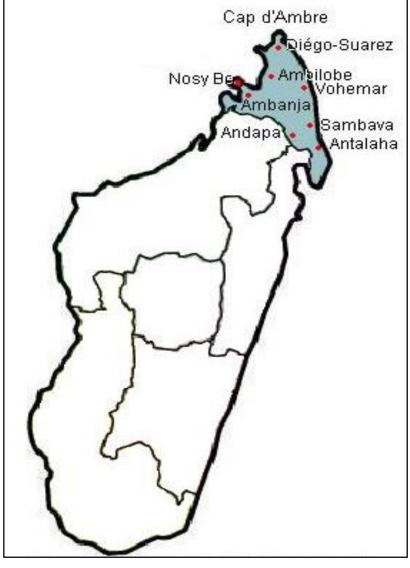

Le paludisme en croissance constante :

- Paludisme (1 million de morts par an dont 90 % en Afrique 20 % de décès chez les enfants de moins de 5 ans)
- Impact économique et social majeur.



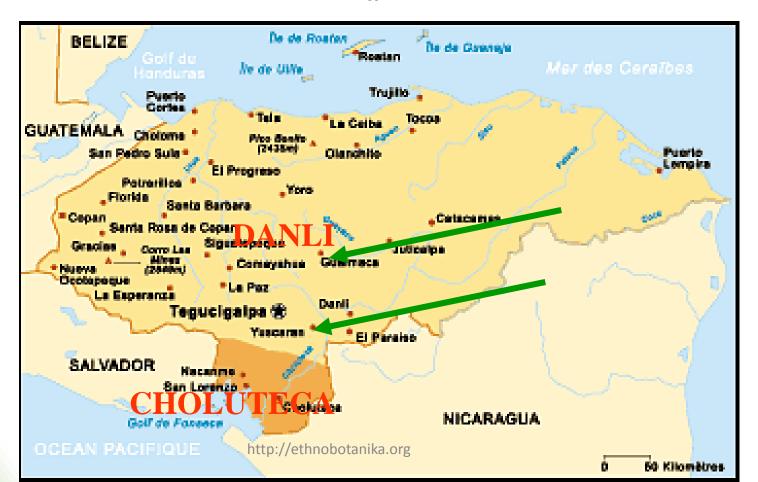
Répartition du paludisme dans le monde [OMS, 2008]

Les zones de résistances au P. falciparum dans le monde



Exemple à Madagascar

Madagascar: région DIANA



Honduras

Départements de Choluteca et El Valle Partenaires : Pastorale de la Santé, Evêché de Choluteca et Danli

Problématique d'Artemisia annua

- ** Plante chinoise
- ***** Culture délicate
- * Variation du taux d'artémisinine
- ★ Stockage délicat
- ***** Extraction rapide
- ** Coût de production important

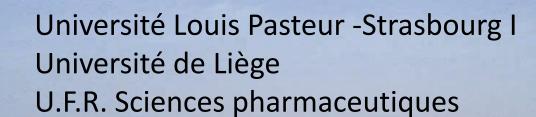
Études ethnobotaniques sur les plantes à activités antipaludéennes.

Audrey Pujol

Neurolaena lobata

(plante anti-leishmaniose et antipaludéenne)

Mise en culture - Pedro Joaquin



Paludisme Quassia amara – le retour!

Etude de plantes médicinales traditionnellement utilisées dans le soin du paludisme au Burkina Faso

Lise Bessot
Olivia Jansen



Avant propos

• Problèmes d'accès aux médicaments essentiels

• Ressources des flores et des pharmacopées locales

• Recherches ethnopharmacologiques

Thérapies traditionnelles sûres et efficaces : stratégie de développement sanitaire de ces populations

Le paludisme,

un véritable enjeu de santé dans le monde

Bilan sanitaire:

- 40 % de la population mondiale exposée
- entre 350 et 500 millions de personnes atteintes chaque année soit 5,6 à 8 % de la population mondiale
- Entre 1 à 3 millions de morts par an
- District sanitaire de Réo, Burkina Faso (2005):
 - principale cause d'hospitalisation,
 - 56 % de l'ensemble des décès tout âge confondu,
 - 68 % des décès des moins de 5 ans.

Le paludisme, un véritable enjeu de santé dans le monde

Impact économique et social:

- Famille africaine: ¼ du revenu consacré à la prévention et au traitement du paludisme
- Continent africain: 12 milliards de dollars de pertes annuelles

- · Vie scolaire perturbée, absentéisme au travail
- Véritable frein au développement

Problématiques de la prise en charge du paludisme au Burkina Faso

- Le Burkina Faso
- Problématiques:
- coût financier

Coartem^R: 5 330 FCFA

Artésunate+amodiaquine: 2 000 FCFA

revenu annuel/habitant=220 dollars en 2002, soit 115 800 FCA

- accessibilité géographique
 - facteur d'ordre culturel

http://ethnobotanika.org

Investigation des plantes à visée antipaludéennes

• Les enquêtes ethnobotaniques

Entretiens collectifs

- Deux entrées:
- Le paludisme: Quelles plantes utilisez-vous dans le soin du paludisme?
- La plante: A quoi sert cette plante?
- 18 espèces citées dans le soin du paludisme et sélectionnées pour cette étude

ttp://ethnobotanika.org

Espèces communément utilisées dans le soin du paludisme

	Nom scientifique	FAMILLE	Nom français	Nom lyélé	Nom mooré
1	Azadirachta indica	Meliaceae	Neem* ***/Margousier***	nim	nim
2	Balanites aegyptiaca	Balanitaceae	Dattier du désert* ***/ Myrobolan d'Egypte* ***	shiam	kielga/kyegelega
3	Bauhinia rufescens	Fabaceae	Bauhinia*	dwamalou	koden taabré/tipoèga
4	Bombax costatum	Bombacaceae	Faux-kapokier***/ kapokier rouge* ***	efoân	voaaka
5	Capparis sepiaria	Capparaceae	Câprier***	niaboh	silkoré/kal-yanga/sil-koatga
6	Cenchrus biflorus	Poaceae		Swélé	
7	Chrysanthellum indicum subsp. afroamericanum	Asteraceae			wan tugdo/kaan-nao/sileg- nagnessé
8	Combretum micranthum	Combretaceae	Kinkéliba**	go	randega
9	Delonix regia	Fabaceae	Flamboyant***	nasara échila	nasara rôâaga
10	Hyptis spicigera	Lamiaceae		bombomjourhou	kim rigd gnoogo
11	Mangifera indica	Anacardiaceae	Manguier/Mangot***	mangué	manguié, mangê n tiiga
12	Nauclea latifolia	Rubiaceae	Pêcher africain***/ liane fraise	zanlô	katr foaanga/gwiinga
13	Psidium guajava	Myrtaceae	Goyavier***	Goya	goyaak tiiga/goyaaka
14	Senna siamea	Fabaceae	Casse du Siam***/bois- perdrix***		
15	Senna alata	Fabaceae	Dartrier		jonis tiiga
16	Terminalia catappa	Combretaceae	Badamier**	Kô néboulou	
17	Vernonia colorata	Asteraceae			koa-safandé
18	Waltheria indica	Sterculiaceae http	//ethnobotanika.org	goumounloâpoâ ra	soum

Investigation des plantes à visée antipaludéennes

• Etudes bibliographiques de la sélection d'espèces

Fiches monographiques

Nom scientifique:

Synonymes:

Famille:

Risques de falsification:

<u>Description botanique</u>

Distribution géographique

Utilisation en médecine traditionnelle

- Données issues de la bibliographie
- Données issues des enquêtes

Constituants chimiques

<u>Pharmacologie</u>

- Humaine
- Animale

<u>Toxicologie</u>

Autres données

<u>Préparation et posologie</u>

Discussion

Résultats et perspectives

Données encourageantes sur le potentiel thérapeutique des espèces:

- Bénéfice direct : propriétés anti-malarique
 - Bénéfice indirect : effets sur les symptômes de la crise

Effets hépatoprotecteurs, fébrifuges, etc...

Résultats et perspectives

• Propriétés anti-malariques

Azadirachta indica A. Juss.

- Extrait alcoolique de feuilles et de graines

actifs sur Plasmodium

Toxicité

Combretum micranthum G. Don

- Extrait de feuilles modérément actifs

Nauclea latifolia Smith

- Propriétés anti-malariques pour

les extraits de racines, tiges, feuilles

Extraits riches en alcaloïdes Toxicité à long terme (foie, rein)

Psidium guajava L.

- Activité anti-plasmodiale pour l'extrait d'écorce de tige

- Extrait de feuilles?

Senna siamea (Lam.) H.S. Irwin et Barneby

- Activité anti-malarique de différents extraits (écorce, feuilles)

- Intérêt de son association à d'autres plantes

Toxicité du barakol

Vernonia colorata Drake

- Activité anti-malarique pour l'extrait des parties aériennes

- Vernodalol et 11β, 13-dihydrovernodaline

• Propriétés hépatoprotectrices

Azadirachta indica A. Juss.

Balanites aegyptiaca (L.) Delile

Chrysanthellum indicum subsp. afroamericanum B.L.Turner

Terminalia catappa L.

Psidium guajava L.

Senna alata (cholérétique) (Lam.) H.S. Irwin et Barneby

Combretum micranthum G. Don

Extraits actifs, toxicité, doses efficaces

Résultats et perspectives

• Propriétés antipyrétiques

- Azadirachta indica A. Juss.
- Vernonia colorata Drake
- Propriétés immunostimulantes, anti-asthénique, etc...
 - Bombax costatum Pellegrin et Vuillet: riche en Fer
 - Mangifera indica L.: immunostimulant
 - Waltheria indica L.: anti-anémiant
 - Capparis sepiaria L.: qualité nutritionnelle
 - Cenchrus biflorus Roxburgh.: qualité nutritionnelle

http://ethnobotanika.org

• Pistes d'activités

Bauhinia rufescens Lam. (similitudes chimiques dans le genre)

Capparis sepiaria L. (similitudes chimiques dans la famille)

Delonix regia (Boj.) Raf.

Conclusion

- Enjeux du paludisme étude de la pharmacopée traditionnelle
- Validation scientifique de l'usage traditionnel
- Candidates potentiellés pour des investigations des propriétés anti-malariques
- · Nécessité de confronter ces informations au terrain

« Investigation des potentialités antiplasmodiales de plantes utilisées en médecine traditionnelle au Burkina Faso »

Présenté par Olivia JANSEN Service de Pharmacognosie - ULg

Plantes sélectionnées et récoltées

	Espèces	Famille	Echantillon	Lieu de récolte (* = Herboriste)
1	Bauhinia rufescens Lam.	FABACEAE	Feuilles Tige	Koudougou Koudougou
2	Bergia suffruticosa Fenzl.	ELATINACEAE	Plante	Koudougou*
3	Boswellia dalzielli Hutch	BURSERACEAE	Feuilles	Kassou
4	febrifuga (Afz ex G.Don)	RUBIACEAE	Feuilles	Banfora
5	Dicoma tomentosa Cass	ASTERACEAE	Plante	Banfora*
6	<i>Dyschoriste perrottetii</i> O. Kuntze	ACANTHACEAE	Plante	Koudougou*
7 8 9	Ficus thonningii Blume Gardenia sokotensis Hutch Jatropha gossypiifolia L	MORACEAE EUPHORBIACEA	Feuilles Feuilles Feuilles	Godin Godin Bonyolo
1 0	Loeseneriella africana (Willd.) N. Hallé	CELASTRACEAE	Feuilles	Banfora
11	Psorospermum senegalense Spach	CLUSIACEAE	Feuilles	Banfora
			Feuilles Ecorces Ecorces 2	Réo Godin Réo
1		STERCULIACEAE	Racines Tiges feuillées	Réo Réo
3	Waltheria indica L.			

✓ Tests in vitro sur souche CQ-Résist. de P. falciparum (W2)

✓ Cytotoxicité *in vitro* sur cellules saines

Test WST-1 / Souche : WI-38 (fibroblastes)

→ Calcul index de sélectivité

→ !!!! Gardenia !!!!

sélection

Sélection

Dicoma tomentosa (pl. ent.) et Psorospermum senegalense (fe.)

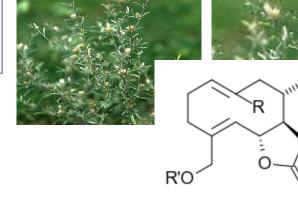
→ à étudier sur le plan phytochimique et pharmacologique

III. Dicoma tomentosa Cass.

ASTERACEAE

AOÛT 2010

Dicoma tomentosa Cass. ETHNOBOTANIQUE


Gômtidga, Sakwipèelga (mooré)

En zone Mossi (Boutoko)	connu par sa vertu médicinale contre la toux	Infusion de feuilles ou mâcher les feuilles, aspirer le jus, avaler ce jus et rejeter le résidus	
	chez femmes accouchées pour les laver et bien nettoyer le ventre.	bouillir les tiges feuillées du <i>Dicoma</i> tomentosa, filtrer la solution et boire ou encore bouillir, laisser refroidir et se purger	
	contre indiqué chez les femmes enceintes car peut provoquer des avortements		
En zone Gourounsi (Bonyolo, Mogueya, Poun)	connu pour son traitement des gonflements du foie des enfants lors du paludisme pendant le froid		
	aussi utilisé dans le cas paludisme simple		
Région du Plateau central	contre le paludisme des enfants avec inflammation de la rate (Guinko, 1988)	Toute la plante en décoction (lavements)	
ika.org	aussi contre le paludisme des adultes (Nacoulma, 1996)	Tiges feuillées en usage interne (infusion)	

Dicoma tomentosa Cass. PHYTOCHIMIE

✓ Acide gras : ac. octacosanoïque

√Triterpènes et stérols :

ac. betulinique, lupeylacetate, , taraxasterol, stigmasterol, β-sitosterol

✓ Lactones sesquiterpéniques :

Germacranolides (5) et mélampolides (5)

→ albicolide - urospermal A et dérivés

✓ Flavonoïdes :

Génines (4):

quercétine, eupatine, eupatolitine, dicomaflavone

Hétérosides de quercétine (1), d'eupatolitine (1) et de dicama lavone (3)

PHARMACOLOGIE Dicoma tomentosa Cass.

Pas d'étude pharmacologique sur le Dicoma tomentosa

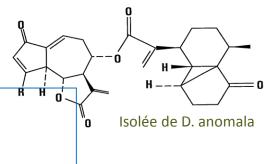
Mais rapport de l'activité antiplasmodiale de D. anomala

Lactones sesquiterpéniques de DT : /

STL's (germacranolides & mélampolides):

Plusieurs rapports d'activité antiplasmodiale, cytotoxique et génotoxique

Eupatine: activité cytotoxique/ anticancéreuse


Quercetine: propriétés antioxydantes et anti-inflammatoires

<u>Ac. betulinique</u>: propriétés antiplasmodiales, anticancéreuses, anti-HIV, antibactériennes (*S. aureus*), anthelmintiques, antioxydantes, immunomodulatrices

<u>Taraxasterol</u>: propriétés antiinflammatoires, antibactériennes, antifongiques, anticancéreuses

<u>Stigmasterol</u>: propriétés hypocholestérolémiantes, hypoglycémiantes, antioxydantes, antiosteoarthritiques, préventives de certains cancers

β-sitosterol: propriétés **hypocholestérolémiantes**, antiinflammatoires, antibactériennes, antifongiques, anticancéreuses

Dicoma tomentosa: travaux réalisés l'an dernier

Récolte de 3 nouveaux échantillons (plantes entière au Burkina Faso par l'équipe de « Jardins du Monde »

- Lot n°1 : récolté à Poun (01/10/2008) 357 g

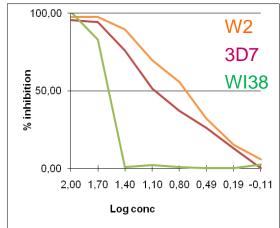
Lot n°2 : récolté à Poun (03/10/2008)
 118 g

Lot n°3 : récolté à Mogueya (07/10/2008) 844 g

❖ Tests antiplasmodiaux

- In vitro (extraits CH2Cl2, MeOH et aqueux X 3 lots) - P. falciparum 3D7 & W2

- In vivo (extrait MeOH i.p et p.o) - P. berghei


Tests cytotoxicité + calcul IS

(extraits CH2Cl2, MeOH et aqueux X 3 lots)

- fibroblastes WI38

Tests génotoxicité

(extraits CH2Cl2, MeOH et aqueux lot n°1)

Fractionnement bioguidé de l'extrait CH2CI2 (lot n°1)

→ Isolement de P1 & P2 non identifiés (petites quantités)

2. Bilan des résultats obtenus avec Dicoma tomentosa

- I. Activité antiplasmodiale in vitro (P. falciparum 3D7 et W2)
- II. Activité cytotoxique in vitro (fibroblastes WI38)
- III. Activité hémolytique in vitro
- IV. Activité antiplasmodiale in vivo (3 tests)
- V. Activité génotoxique in vitro
- VI. Etude phytochimique : CCM des extraits
- VII. Fractionnement bioguidé (extr. CH₂Cl₂)
 - → isolement et identification du PA antiplasmodial majoritaire
- I. Etude des flavonoïdes (extr. EtOH50%)

Rendements d'extraction

Extraits CH2Cl2:

Lot 1 5,43% Lot 2 5,44% Lot 3 4,61%

Extraits MeOH:

Lot 1 11,08% Lot 2 11,46% Lot 3 11,18%

Extraits aqueux:

Lot 1 20,3% Lot 2 20,3% Lot 3 18,3%

Extraits EtOH 50%:

Lot 1 16,17% Lot 2 16,42% Lot 3 16,90% Nouveaux extraits Lot 1

Ether 3,41% EtOAc 4,10 % Ether petrole 1,79 %

Hexane 1,67 %

Extraits obtenus par

macération 3X30 min

(1g/3x10ml slvt)

Sauf extraits aqueux

(décoction 1h)

I. Activité antiplasmodiale in vitro (P. falciparum - 3D7 et W2)

- -Mise en contact extraits (série de 8 dilutions) avec culture de *P. falciparum* (H = 1%; P = 2%) 48h
- Révélation colorimétrique (mesure activité LDH plasmodiale)

- ❖ très bonne activité (IC₅₀ < 5µg/ml)
- ♦ bonne activité (IC₅₀ < 15µg/ml)
- **♦** activité modérée (IC₅₀ < 50µg/ml)

n= 3	IC 50 3D7 ± σ (μg/ml)			IC 50 W2 ± σ (μg/ml)		
	LOT 1	LOT2	LOT 3	LOT1	LOT2	LOT3
CH2Cl2	3,4	3,0	3,8	1,9	1,8	2,1
MeOH	5,8	5,8	9,0	3,0	3,0	4,6
EtOH 50%	12,9	8,4	12,3	9,7	5,8	8,8
H2O	12,8	9,6	18,2	6,7	5,3	12,8
Ether	3,9			4,8		
EtOAc	4,4			4,6		
Ether petrole	23,2			21,2		
Hexane	18,7	http://ethr	obotanika.org	17,7		

II. Activité cytotoxique in vitro (fibroblastes WI38)

		•		
	 IC50		IC50	
	 3D7		W2	
DT1 DCM	3,4		1,9	
DT1 MeOH	5,8		3,0	
DT1 EtOH50%	12,9		9,7	
DT1 H ₂ O	12,8		6,7	
DT1 ether	3,9		4,8	
DT1 EtOAc	4,4		4,6	
DT1 Ether petrole	23,2		21,2	
DT1 Hexane	18,7		17,7	
DT2 DCM	3,0		1,7	
DT2 MeOH	5,8		3,1	
DT2 EtOH50%	8,4		5,8	
DT2 H ₂ O	9,6		5,3	
DT3 DCM	3,8		2,1	
DT3 MeOH	9,0		4,6	
DT3 ETOH 50%	12,3		8,8	
DT3 H2O	18,2		12,8	

III. Activité hémolytique in vitro

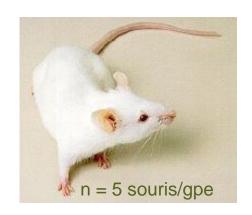
Extraits testés : Dicoma tomentosa lot n°1

- CH2CI2
- MeOH
- EtOH50%
- H2O

- % hémolyse
- < 1%
- < 1%
- < 1%
- < 1%

Test d'hémolyse : mode opératoire

- Dilution de solutions mères d'extraits/produits purs (DMSO) avec du PBS (5X)
- Mise en contact extrait avec solution de globules rouges 10% (v/v) (1h) (dilution 20X)
- centrifuger 5' et prélever 150 µl surnageant → boite 96-puits
- Mesurer l'absorbance à 550 nm
- Chaque condition en triplicate (C extrait : 100µg/ml)
- **T positif**: Triton X-100 (20%, v/v, H2O) → hémolyse = 100%
- T négatif : PBS
- T control solvant : DMSO 1%


% Hémolyse = A produit - A solvant x 100
A triton - PBS
Obotanika.org

IV. Activité antiplasmodiale in vivo (3 tests)

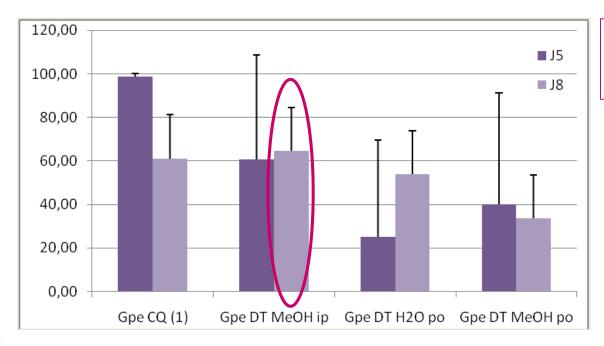
- ✓ Souche *P. berghei* (souris) :
- → 4-days suppressive test
 - ✓ Infection : Jour 1
 - ✓ Traitement : Jour 1 à 4 (1 X/jour)
- ✓ Mesure de la parasitémie :

Frottis (sang prélevé au niveau de la queue) à Jours 5 & 8

✓ Réalisation de 3 tests indépendants:

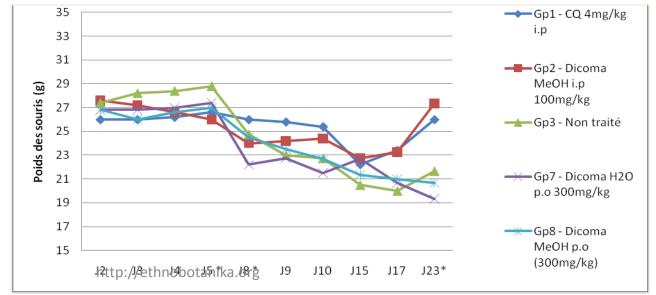
TEST n°1	- extrait MeOH i.p 100mg/kg		
	- extrait MeOH p.o 300mg/kg		
	- extrait H20 p.o 300mg/kg		
TEST n°2	-extrait EtOH50% i.p 100 mg/kg		
	- extrait EtOH 50% p.o 300mg/kg		
TEST n°3	- extrait MeOH i.p 100 mg/kg		
	extrait EtOH 50% i.p 100 mg/kg http://ethnobotanika.org		

T négatif Non traité

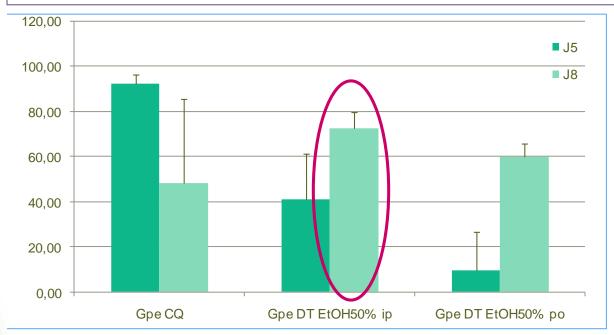

- \rightarrow Croissance *P. berghei* = 100%
- → Calcul inhibition croissance (%)

T positif:

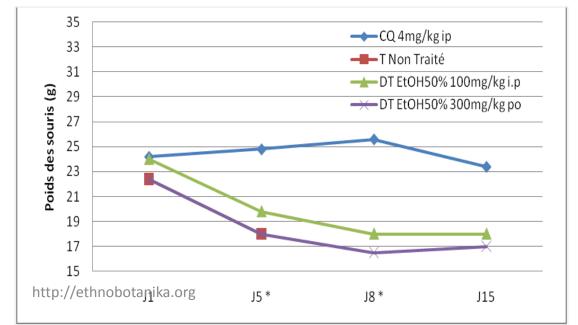
chloroquine 4mg/kg i.p ou extrait MeOH de quinquina 200mg/kg i.p. (test 3)



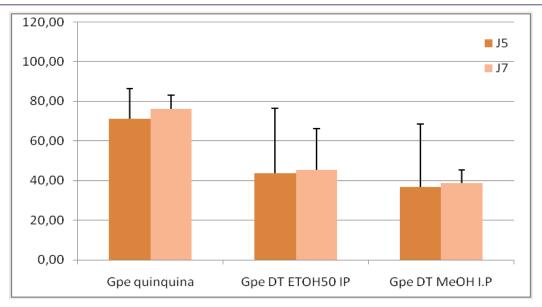
IV. Activité antiplasmodiale in vivo (test 1)


% inhibition croissance *P. berghei*

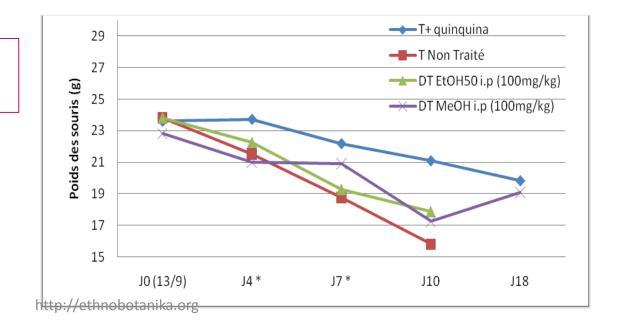
Evolution du poids des souris



IV. Activité antiplasmodiale in vivo (test 2)

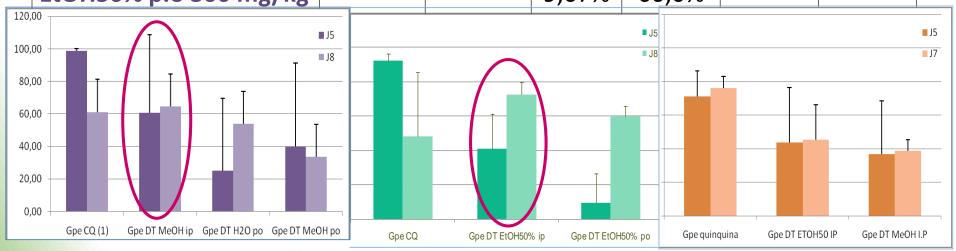

% inhibition croissance *P. berghei*

Evolution du poids des souris



IV. Activité antiplasmodiale in vivo (test 3)

% inhibition croissance *P. berghei*


Evolution du poids des souris

IV. Activité antiplasmodiale in vivo : résumé 3 tests

% inhibition de la	TEST n°1		TEST n°2		TEST n°3	
croissance P. berghei	J5	J8	J5	J8	J5	J8
MeOH i.p 100mg/kg	60,7%	64,6%			43,8%	45,6%
MeOH p.o 300mg/kg	40,2%	33,6%				
H20 p.o 300mg/kg	25,2%	53,8%				
EtOH50% i.p 100mg/kg			41,1%	72,7%	36,7%	38,8%
EtOH50% p.o 300 mg/kg			9,67%	60,0%		

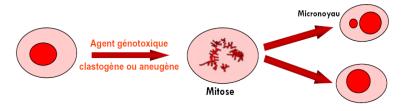
Moyennes % INHIBITION:

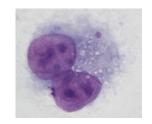
MeOH i.p: $J5:52,2 \pm 11,9\%$

EtOH50% ip: $J5:38,8 \pm 3,11\%$

J8:55,1 ± 13,4%

 $J8:55,7\% \pm 23,69\%$


V. Activité génotoxique in vitro


En collaboration avec l'Université d'Aix-Marseille II (Prof. E. Ollivier et Dr. Di Giorgio)

Test de numération des micronoyaux :

Test court (3h) de mutagénèse qui permet d'identifier les agents physiques ou chimiques clastogènes ou aneugènes,

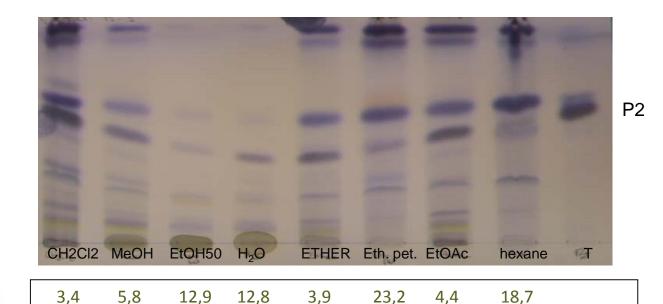
c'est à dire capables d'induire la formation de micronoyaux dans des cellules de mammifères

Afin de mimer les transformations métaboliques caractéristiques des organismes supérieurs, le test inclut l'utilisation d'une source exogène d'activation métabolique (S9 mix)

V. Activité génotoxique in vitro

Concentration Minimale Clastogène:

concentration d'extrait à partir de laquelle une augmentation significative des taux de cellules micronucléées est observée.


Extraits lot n	°1	Concentration Minimale Clastogène (µg/ml)
-CH ₂ Cl ₂	- S9 Mix + S9 Mix	0.42 0.59
-	- S9 Mix	3.44
	+ S9 Mix	8.88
H_20	- S9 Mix	NS
Weon	+ S9 Mix	NS

- → Activité génotoxique importante de l'extrait CH2Cl2 (et de l'extrait aqueux)
 - → PA génotoxique ou présence de pestici les?
 - → Tester les mêmes extraits réalisés à partir d'un autre lot (n°3)
- → Tester sur d'autres modèles : tests d'Ames et tests des comètes

 http://ethnobotanika.org PA antiplasmodiaux isolés

VI. Etude phytochimique : CCM 8 extraits (lot n°1)

TERPÈNES

(vanilline sulfurique 100°C 5')

<u>φ. Mob : CH2Cl2 –</u>

MeOH (95:5)

 IC_{50} (µg/ml)

CH2Cl2 MeOH EtOH50 H₂O ETHER Eth. pet. EtOAc hexane

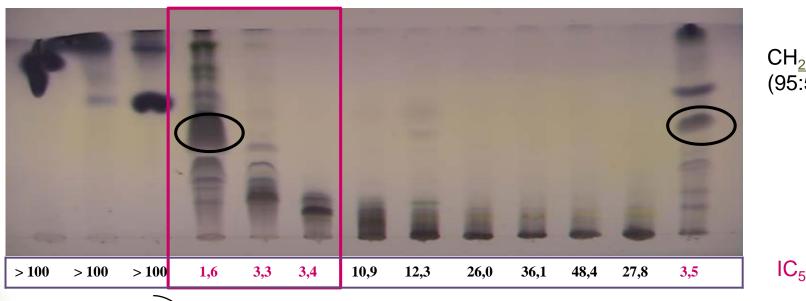
LUTEOLINE-7-O-Glc

LUTEOLINE

FLAVONOÏDES

(réactif DPBAE UV 366nm)

<u>φ. Mob</u> : EtOAc –


HOAc – Ac form.- H2O

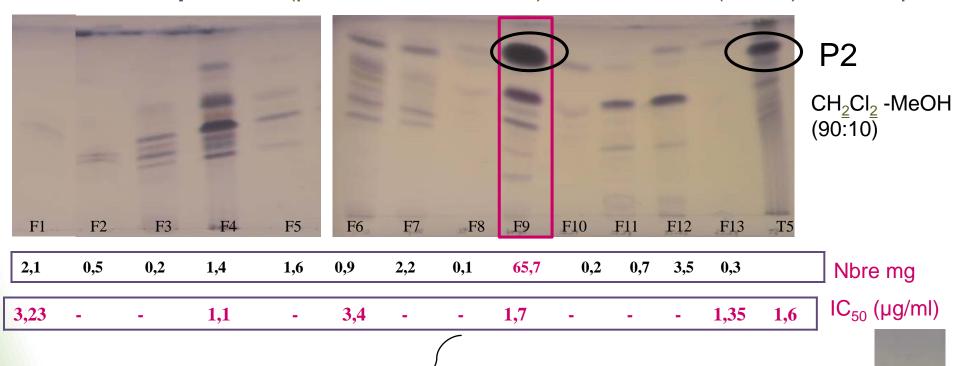
(100:11:11:26)

VII. Fractionnement bioguidé (extr. CH₂CI₂)

1. HPLC Preparative (phase normale Si60) - gradient CH₂Cl₂-MeOH (3-5%)

CH₂Cl₂ -MeOH (95:5)

 IC_{50} (µg/ml)

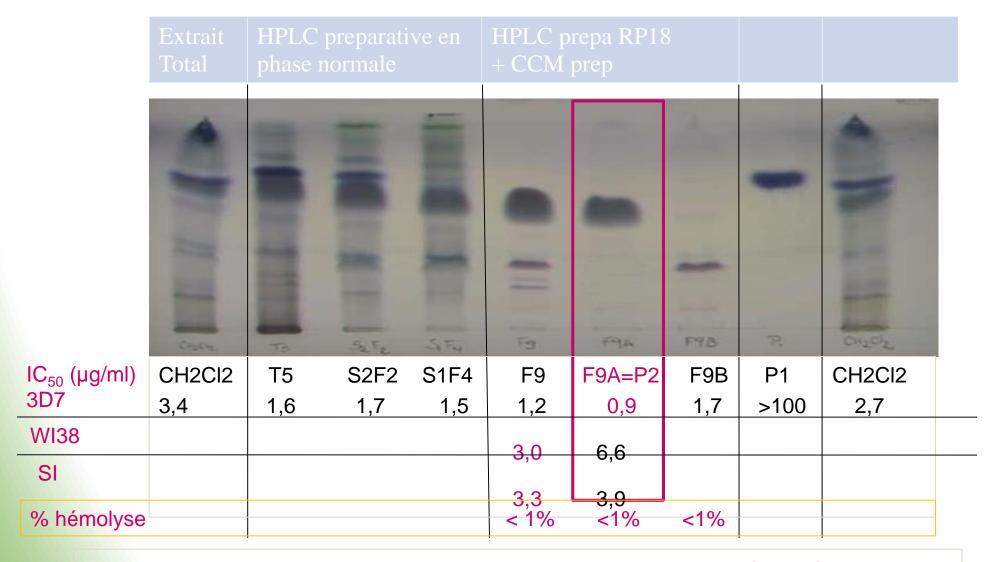

- Plusieurs fractions actives → synergie d'activité antiplasmodiale
- Un produit largement majoritaire dans la fraction la plus active (=P2) qui est aussi la fraction majoritaire (~ 400mg / 1g d'extrait)

Séparer cette fraction par HPLC Preparative (phase inverse RP18) - MeOH:H₂O (50:50) isocratique

VII. Fractionnement bioguidé (extr. CH₂CI₂) Suite

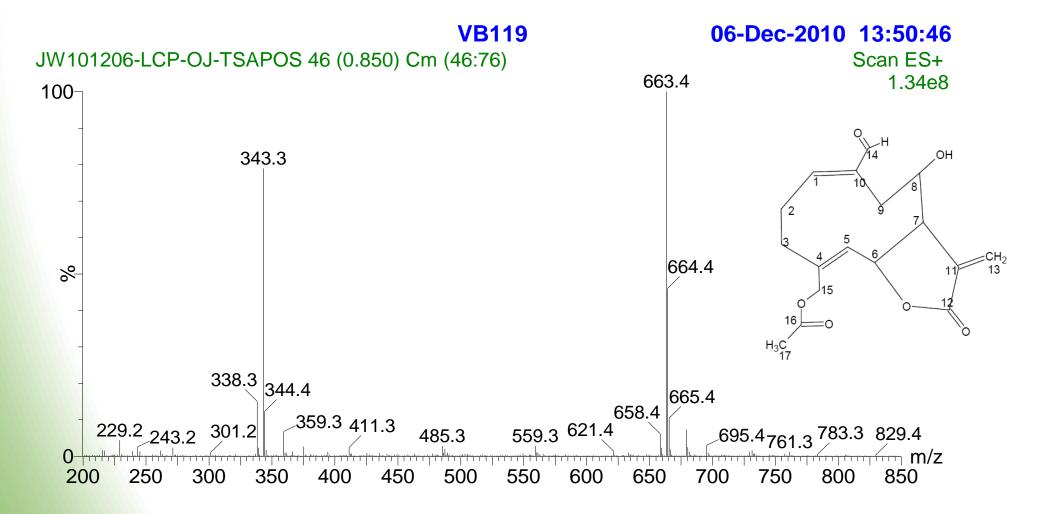
2. HPLC Préparative (phase inverse RP18) - MeOH:H2O (50:50) isocratique

Synergie d'activité antiplasmodiale entre +s composés terpéniques
 -Produit majoritaire P2 dans la fraction F9 (= fraction majoritaire)
 20 mg


3. Purifier cette fraction par CCM Preparative (CH2Cl2-MeOH

95:5) P2 = F9A

FAA


VII. Fractionnement bioguidé (extr. CH₂CI₂) : RESUME

F9A= P2 = produit majoritaire de T5 et extr. CH2Cl2 = PA antiplasmodial majoritaire

VII. Identification structurale de F9A: MS

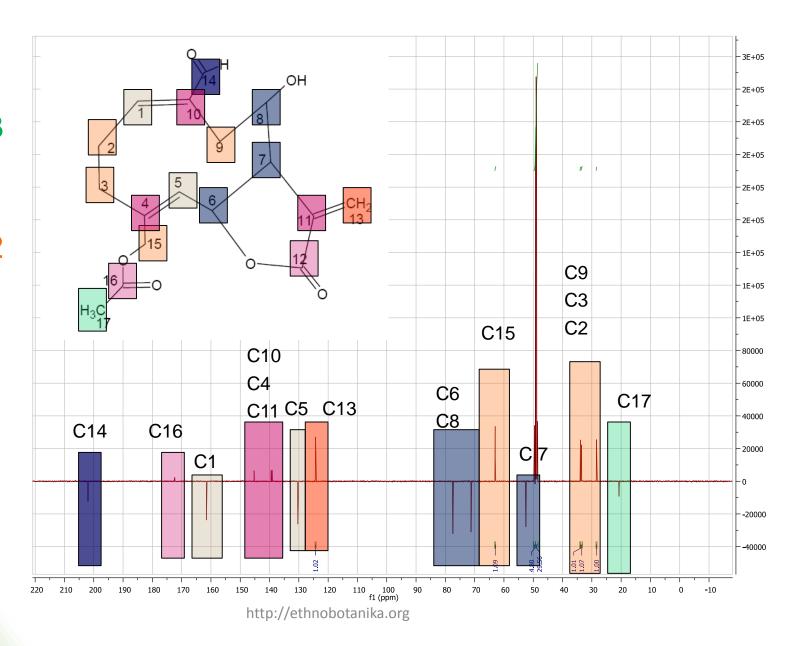
2 ions majoritaires

m/z = 343 et 663

→ Adduits sodium et dimérisation dans la source ?

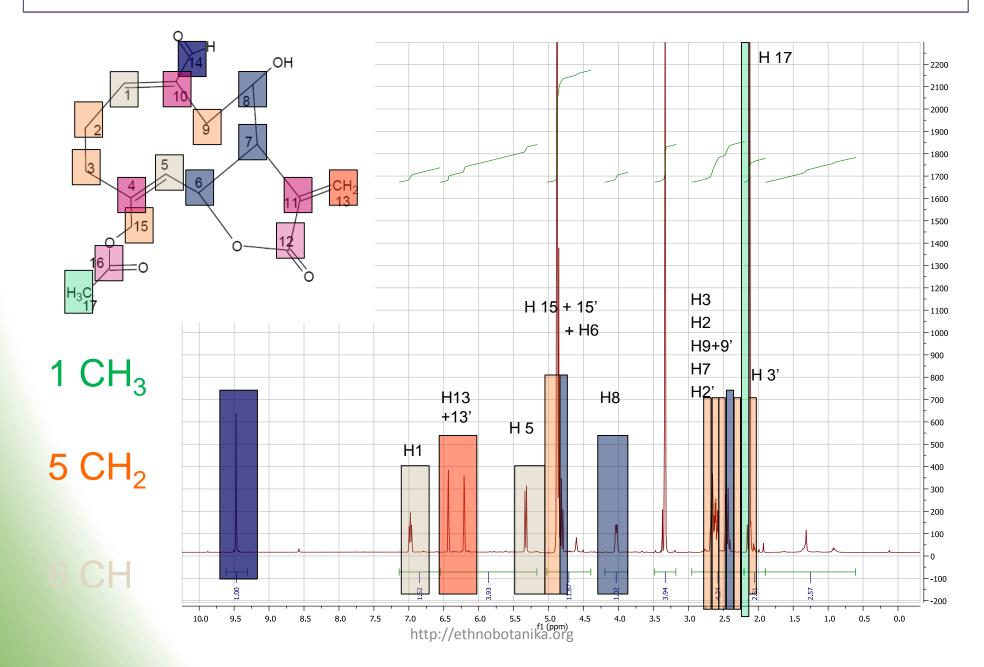
m/z « réel » = 320 (+1)

 $C_{17}H_{20}O_6$

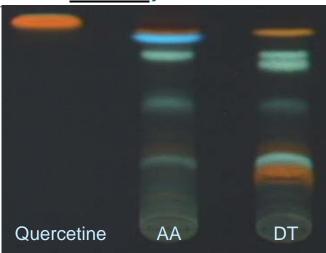

VII. Identification structurale de F9A: RMN ¹³C

1 CH₃

5 CH₂


6 CH

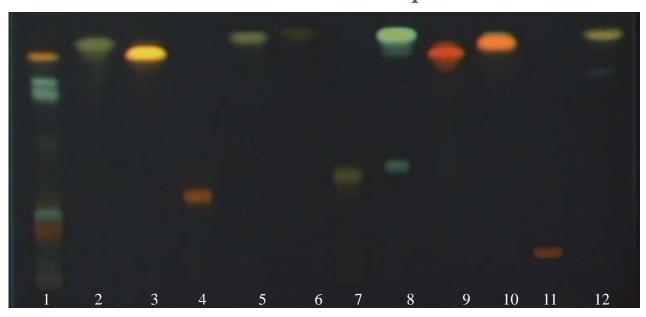
5 C


VII. Identification structurale de F9A: RMN ¹H

VIII. Etude des flavonoïdes de Dicoma tomentosa (extr.

E401601%)

tomentosa et d'Artemisia annua


Comparaison des flavonoïdes de Dicoma

Plusieurs spots en communs

Comparaison avec les substances de référence connues dans Artemisia et disponible au labo

- 1. Extrait DT ETOH 50%
- 2. Apigénine
- 3. Lutéoline
- 4. Lutéoline-7-glc
- 5. Acacétine
- 6. Chrysine
- 7. Astragaline
- 8. Kaempferol
- 9. Myricétine
- 10. Quercétine
- 11. Rutine
- 12. Rétusine

VIII. Etude des flavonoïdes de Dicoma tomentosa

2. HPLC: Echantillons: DT ETOH 50 (02) et T luteoline + ~-7Glc (01)

Ph stat = Pursuit diphenyl

Phmob = gradient ACN-TFA 0,05% (FAG4)

DAD1 A, Sig=250,4 Ref=400,00 (OLIVIA_DTNET50_FAG4_FLAVI.D)

ACN-TFA 0,05% (FAG4) *DAD1, 15.279 (669 mAU, -) Ref=15.072 & 15.646 of ET50_FAG4_FLAV1.D 200 *DAD1, 15.712 (323 mAU, -) Ref=15.226 & 17.032 of ET50 FAG4 FLAV2.D Norm. 600 175 500 400 150 300 125 200 00 220 240 260 280 300 320 340 360 *DAD1, 22.739 (674 mAU, -) Ref=22.479 & 23.419 of ET50_FAG4_FLAV1.D *DAD1, 22.599 (175 mAU, -) Ref=22.159 & 22.992 of ET50_FAG4_FLAV2.D Norm. 600 500 400 300 -200 -100 -220 240 260 280 300 320 340

Perspectives

Dicoma tomentosa Cass.

- Publication (n°3) en préparation
- Résultats génotoxicité
- Stade d'action PA / Plasmodium falciparum ?
- Continuer investigation des flavonoïdes (& des terpènes ?)

Autres plantes:

Psorospemum senegalense Spach.

- Problèmes synonymie botanique → en suspend

Gardenia sokotensis Hutch

- Ecartée car activité cytotoxique > activité antiplasmodiale (IS= 0,9)
- Pas d'étude phytochimique dans la littérature pour cette espè
- Activité in vivo démontrée (Traoré 2003) mais pas de PA isolé
- Autre *Gardenia (G. saxatilis*) antiplasmodial → triterpènes
- → Essayer un fractionnement pour isoler les PA (?)

Merci pour votre attention

Les monographies simplifiées de la plupart des plantes présentées ici sont disponibles en ligne sur le site :